Metabolomic analysis of isonitrosoacetophenone-induced perturbations in phenolic metabolism of Nicotiana tabacum cells.
نویسندگان
چکیده
Plants have developed biochemical and molecular responses to adapt to different stress environments. One of the characteristics of the multi-component defence response is the production of defence-related metabolites. Plant defences can be triggered by various stimuli, including synthetic or naturally occurring molecules, especially those derived from pathogens. In the current study, Nicotiana tabacum cell suspensions were treated with isonitrosoacetophenone (INAP), a subcomponent of a plant-derived stress metabolite with anti-fungal and anti-oxidant properties, in order to investigate the effect thereof on cellular metabolism. Subsequent metabolomic-based analyses were employed to evaluate changes in the metabolome. UPLC-MS in conjunction with multivariate data analyses was found to be an appropriate approach to study the effect of chemical inducers like INAP on plant metabolism in this model system. Principal component analysis (PCA) indicated that INAP is capable of inducing time-dependent metabolic perturbations in the cultured cells. Orthogonal projection to latent structures discriminant analysis (OPLS-DA) revealed metabolites of which the levels are affected by INAP, and eight of these were tentatively annotated from the mass spectral data and online databases. These metabolites are known in the context of plant stress- and defence responses and include benzoic- or cinnamic acid derivatives that are either glycosylated or quinilated as well as flavonoid derivatives. The results indicate that INAP affects the shikimate-, phenylpropanoid- and flavonoid pathways, the products of which may subsequently lead to an anti-oxidant environment in vivo.
منابع مشابه
Multivariate statistical models of metabolomic data reveals different metabolite distribution patterns in isonitrosoacetophenone-elicited Nicotiana tabacum and Sorghum bicolor cells
Isonitrosoacetophenone (INAP, 2-keto-2-phenyl-acetaldoxime) is a novel inducer of plant defense. Oxime functional groups are rare in natural products, but can serve as substrates depending on existing secondary pathways. Changes in the metabolomes of sorghum and tobacco cells treated with INAP were investigated and chemometric tools and multivariate statistical analysis were used to investigate...
متن کاملCloning and Expression of TNF Related Apoptosis Inducing Ligand in Nicotiana tabacum
Molecular farming has been considered as a secure and economical approach for production of biopharmaceuticals. Human TNF Related Apoptosis Inducing Ligand (TRAIL) as a promising biopharmaceutical candidate has been produced in different expression hosts. However, little attention has been paid to molecular farming of the TRAIL in spite of numerous advantages of plant expression systems. Theref...
متن کاملCloning and Expression of TNF Related Apoptosis Inducing Ligand in Nicotiana tabacum
Molecular farming has been considered as a secure and economical approach for production of biopharmaceuticals. Human TNF Related Apoptosis Inducing Ligand (TRAIL) as a promising biopharmaceutical candidate has been produced in different expression hosts. However, little attention has been paid to molecular farming of the TRAIL in spite of numerous advantages of plant expression systems. Theref...
متن کاملThe role of phenolic compounds in growth improvement of cultured tobacco cells after exposure to 2-D clinorotation
Previous studies have confirmed that the growth and development of plants are entirely dependent on the gravitational acceleration of the Earth. So far, most of the studies on the plant response to the Earth gravity have focused on the geotropism of root tip of higher plants<span lang="AR-SA" dir="RTL...
متن کاملProfiling of Altered Metabolomic States in Nicotiana tabacum Cells Induced by Priming Agents
Metabolomics has developed into a valuable tool for advancing our understanding of plant metabolism. Plant innate immune defenses can be activated and enhanced so that, subsequent to being pre-sensitized, plants are able to launch a stronger and faster defense response upon exposure to pathogenic microorganisms, a phenomenon known as priming. Here, three contrasting chemical activators, namely ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Phytochemistry
دوره 94 شماره
صفحات -
تاریخ انتشار 2013